Компонент ОПОП <u>25.05.03 Техническая эксплуатация транспортного радиооборудования</u> наименование ОПОП

<u>Б1.О.19</u> шифр дисциплины

РАБОЧАЯ ПРОГРАММА

Цисциплины (модуля)	Электроника и устройства сверхвысокой частоты
Разработчик (и):	Утверждено на заседании кафедры
Гурин А.В.	радиотехники и связи
ФИО	наименование кафедры
<u>ст. преп.</u> должность	протокол №_1_ от05.09.2023 года
	Заведующий кафедрой радиотехники и связи
ученая степень,	
звание	Борисова Л.Ф

Пояснительная записка

Объем дисциплины 4 з.е.

1. Результаты обучения по дисциплине (модулю), соотнесенные с индикаторами достижения компетенций, установленными образовательной программой

Компетенции	Индикаторы	Результаты обучения			
	достижения	по дисциплине (модулю)			
	компетенций				
ОПК-1	ИД-1 опк-1	Знать:			
Способен	способен применять	требования нормативных			
использовать	требования нормативных	документов в области			
основные законы	документов в области	радиоэлектронной техники и			
математики, единицы	радиоэлектронной техники	ИКТ;			
измерения,	и ИКТ;	основные направления развития			
фундаментальные	способен применять основные	электроники;			
принципы и	направления развития	теорию линейных цепей,			
теоретические основы	электроники; методы,	принципы создания цифровых			
физики,	позволяющие оценивать	устройств и аналоговых			
теоретической	и оптимизировать работу	усилителей и релаксационных			
механики	элементов СВЧ-тракта	генераторов и основные средства			
	ИД-2 опк-1	автоматизированного			
	способен применять теорию	проектирования.			
	при решении практических	изучить теорию цепей СВЧ;			
	задач	изучить электродинамические			
ПС 06.006 3.1.1	ИД-1 пс 06.006 3.1.1	методы, позволяющие оценивать			
Обнаружение, анализ	способен использовать	и оптимизировать работу			
и диагностика	измерительные системы	элементов СВЧ-тракта;			
неисправностей	различного назначения и	Уметь:			
	современными средствами	применять теорию при решении			
	исследования процессов	практических задач;			
	различных устройств СВЧ-	использовать измерительные			
	тракта при поиске	системы различного назначения			
	неисправностей	и САПР.			
	ИД-2 пс 06.006 3.1.1	пользоваться современными			
	способен использовать САПР	средствами исследования			
	при моделировании работы	процессов различных устройств			
	электронных схем и СВЧ	СВЧ-тракта			
	устройств	Владеть:			
		приемами работы с современным			
		схемотехническим САПР, в том			
		числе САПР моделирующим			
		работу цифровых устройств,			
		и измерительным оборудованием			

2. Содержание дисциплины (модуля)

- Тема 1. Введение. Основные положения теории линейных электрических цепей
- **Тема 2**. Физические основы электроники. Свойства полупроводниковых материалов. Характеристики p-n перехода и перехода Шоттки, а также гетеропереходов.
- **Тема 3**. Полупроводниковые диоды. Биполярные транзисторы. Полевые транзисторы. Особенности электронных приборов СВЧ.

- Тема 4. Применение транзисторов схемы усилителей на транзисторах и генераторов.
- **Тема 5**. Основные цифровые элементы и узлы электронной аппаратуры. Параметры интегральных логических микросхем.
- **Тема 6**. Комбинационные цифровые схемы шифраторы и дешифраторы, цифровые схемы с памятью триггеры и регистры.
 - Тема 7. Аналогово-цифровые и цифро-аналоговые преобразователи
 - Тема 8. Особенности схем СВЧ диапазона. Длинные линии и резонаторы СВЧ.
- **Тема 9**. Методы согласования передающих линий. Понятие об S- параметрах и многополюсниках СВЧ. Направленные ответвители.
- **Тема 10**. Невзаимные устройства СВЧ на ферритах. Разновидности и особенности СВЧ антенн.
- **Тема 11**. Применение САПР при исследовании и проектировании устройств СВЧ диапазона

3. Перечень учебно-методического обеспечения дисциплины (модуля)

- мультимедийные презентационные материалы по дисциплине (модулю) представлены в электронном курсе в ЭИОС МАУ;
- методические указания к выполнению лабораторных/практических/контрольных работ Практикумы по дисциплинам "Электроника" и "Антенны и устройства сверхвысокой частоты (СВЧ)"для обучающихся по специальности 25.05.03"Техническая эксплуатация транспортного радиооборудования" Издательство МГТУ, 2019»представлены в электронном курсе в ЭИОС МАУ;
- методические материалы для обучающихся по освоению дисциплины (модуля) представлены на официальном сайте МАУ в разделе «Информация по образовательным программам, в том числе адаптированным».

4. Фонд оценочных средств по дисциплине (модулю)

Является отдельным компонентом образовательной программы, разработан в форме отдельного документа, представлен на официальном сайте МАУ в разделе «Информация по образовательным программам, в том числе адаптированным». ФОС включает в себя:

- перечень компетенций с указанием этапов их формирования в процессе освоения дисциплины (модуля);
 - задания текущего контроля;
 - задания промежуточной аттестации;
 - задания внутренней оценки качества образования.
- **5. Перечень основной и дополнительной учебной литературы** (печатные издания, электронные учебные издания и (или) ресурсы электронно-библиотечных систем)

Основная литература:

- 1. Батоврин В.К., Бессонов А.С., Мошкин В.В.: LabVIEW : Практикум по аналоговым элементам информационно-измерительной техники: Лабораторный пректикум. / Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московских государственный технический университет радиотехники, электроники и автоматики» М., изд-во МИРЭА, 2014. 116 с.
- 2. Батоврин В.К., Бессонов А.С., Мошкин В.В.: LabVIEW : Практикум по цифровым элементам информационно-измерительной техники: Лабораторный практикум. / Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московских государственный технический университет радиотехники, электроники и автоматики» М., изд-во МИРЭА, 2014. 118 с.
- 3. Власов, А.Б. Электроника, часть I "Элементы электронных схем", курс лекций по дисциплинам "Электротехника и электроника", "Судовая электроника и силовая преобразовательная техника": Учеб. пособие для специальностей 180404 «Эксплуатация судового

электрооборудования и средств автоматики», 201300 «Техническая эксплуатация транспортного радиооборудования», 200700 «Радиотехника»/ А.Б. Власов. – Мурманск: Изд-во МГТУ, 2007. – 153 с.

- 4. Власов, А.Б. Электроника, часть II, "Основные аналоговые элементы и узлы электронной аппаратуры", курс лекций по дисциплинам "Электротехника и электроника", "Судовая электроника и силовая преобразовательная техника": Учеб. пособие для специальностей 180404 «Эксплуатация судового электрооборудования и средств автоматики», 201300 «Техническая эксплуатация транспортного радиооборудования», 200700 «Радиотехника»/ А.Б. Власов. Мурманск: Изд-во МГТУ, 2007. 205 с.
- 5. Власов, А.Б. Электроника, часть III, "Основные цифровые элементы и узлы электронной аппаратуры", курс лекций по дисциплинам "Электротехника и электроника", "Судовая электроника и силовая преобразовательная техника": Учеб. пособие для специальностей 180404 «Эксплуатация судового электрооборудования и средств автоматики», 201300 «Техническая эксплуатация транспортного радиооборудования», 200700 «Радиотехника»/ А.Б. Власов. Мурманск: Изд-во МГТУ, 2007. 205 с.
- 6. Солодов, В. С. Электроника и схемотехника. В 2 ч. Ч. 1 [Электронный ресурс] : учеб. пособие для обучающихся по направлению подгот. 15.03.04 "Автоматизация технологических процессов и производств" / В. С. Солодов, А. А. Маслов, А. В. Кайченов; Федер. агентство по рыболовству Рос. Федерации, ФГБОУ ВО "Мурман. гос. техн. ун-т". Электрон. текстовые дан. (1 файл : 4,33 Мб). Мурманск : Изд-во МГТУ, 2017. 199 с. : ил. Доступ из локальной сети Мурман. гос. техн. ун-та. Загл. с экрана. Имеется печ. аналог 2017 г. Библиогр.: с. 161-162. ISBN 978-5-86185-936-3 (общ). ISBN 978-5-86185-937-0 (ч. 1).
- 7. Солодов, В. С. Электроника и схемотехника. В 2 ч. Ч. 1 : учеб. пособие для обучающихся по направлению подгот. 15.03.04 "Автоматизация технологических процессов и производств" / В. С. Солодов, А. А. Маслов, А. В. Кайченов; Федер. агентство по рыболовству Рос. Федерации, ФГБОУ ВО "Мурман. гос. техн. ун-т". Мурманск : Изд-во МГТУ, 2017. 199 с. : ил. Имеется электрон. аналог 2017 г. Библиогр.: с. 161-162. ISBN 978-5-86185-936-3 (общ). ISBN 978-5-86185-937-0 (ч. 1) : 195-72.
 - 8. Гусев В.Г. Электроника / В.Г. Гусев, Ю.М. Гусев. М.: Высшая школа, 1991. 622 с.
 - 9. Жеребцов, И.П. Основы электроники /И.П. Жеребцов. –Л.: Энерготомиздат, 1990. 352с.
 - 10. Прянишников В.А. Электроника. С. Петербург: Корона принт, 2000, 416 с.
- 11. Татьянченко Ю.Г. Курс "Основы судовой электроники", раздел І: Полупроводниковые приборы. Мурманск: 1989.– 154 с.
- 12. Татьянченко Ю.Г. Курс "Основы судовой электроники", раздел II: Электронные устройства на дискретных полупроводниковых приборах. Ч. 1. Усилители постоянного тока. Мурманск: 1989.– 117 с.
- 13. Татьянченко Ю.Г. Курс "Основы судовой электроники", раздел II: Электронные устройства на дискретных полупроводниковых приборах. Ч. 2. Усилители переменного тока и пассивные формирующие цепи. Мурманск: 1991. 165 с.
- 14. Татьянченко Ю.Г. Курс "Основы судовой электроники", раздел III: Электронные устройства на логических интегральных микросхемах. Ч. 1. Синтез и анализ схем комбинационной логики. Мурманск: 1990. 134 с.
- 15. Татьянченко Ю.Г. Курс "Основы судовой электроники", раздел III: Электронные устройства на логических интегральных микросхемах. Ч. 2. Основы цифровой техники. Мурманск: 1990. 156 с.
- 16. Лебедев И.В. Техника и приборы СВЧ. Под ред. академика Н.Д. Девятова / Учебник для студентов вузов по специальности «Электронные приборы», 2-е изд., М., «Высш. школа», $1970.-\mathrm{t.1},440$ с., ил.
- 17. Сазонов Д.М. Антенны и устройства СВЧ : Учеб. для радиотехнич. спец. Вузов. М.: Высш. шк., 1988. 432 м.: ил.

- 18. Виноградов А.Ю., Кабетов Р.В., Сомов А.М. Устройства СВЧ и малогабаритные антенны. / Учеб пособие для вузов. Под ред. А.М. Сомова. М.: Горячая линия телеком, 2012 г., 440 с.: ил.
- 19. Шаров Г.А. Основы теории сверхвысокочастотных линий передач, цепей и устройств. / Научное издание. М.: Горячая линия телеком, 2016 г., 470 с.: ил.
- 20. Максимов В.М. Линии передачи СВЧ диапазона :Учеб. пособие для вузов / М-во образования РФ. М. :Сайнс-Пресс, 2002. 80 с. : ил. (Конспекты лекций по радиотехническим дисциплинам. Вып.32.
- 21. Максимов В.М. Устройства СВЧ: Основы теории и элементы тракта :Учеб. пособие для вузов / М-во образования РФ. М. :Сайнс-Пресс, 2002. 72 с. : ил. (Конспекты лекций по радиотехническим дисциплинам. Вып.3).

Дополнительная литература:

- 1. Архипов Н.С., Архипов С.Н., Полянский И.С., Сомов А.М. Методы анализа волноводных линий передачи. : Учеб. пособие для вузов / Под ред. заслуженного деятеля науки РФ, д.т.н., проф. А.М. Сомова. М.: Горячая линия телеком, 2017 г., 114 с.: ил.
- 2. Д.т.н., профессор А.И. Фалько. Расчет преселекторов радиоприемных устройств микроволнового диапазона: Учебное пособие / СибГУТИ. Новосибирск, 2008 г. 50 с.
- 3. Банков С.Е., Курушин А.А. Электродинамика и техника СЧВ для пользователей САПР : Научное издание / Горячая линия-телеком. Москва, 2008 г. 276 с.
- 4. Браммер Ю.А. Импульсные и цифровые устройства : Учеб. для студентов электрорадиоприброрстроительных сред. спец. учеб. заведений / Ю.А. Браммер, И.Н Пащук 7-е изд., перераб. и доп. М.: Высш.шк., 2003. 351 с.: ил.
- 5. Хоровиц П. Искусство схемотехники / П. Хоровиц, У. Хилл. пер. с англ. –М.: Мир, в 2-х томах, 1984.
- 6. Кардашев Г.А. Виртуальная электроника. Компьтерное моделирование аналоговых устройств / Г.А. Кардашев. –М.: Горячая линия-Телеком, 2002. 260 с.

6. Профессиональные базы данных и информационные справочные системы

1) Электронно-библиотечная система "Издательство Лань"

Доступ к базе данных осуществляется с любого ПК посредством сети Интернет, после регистрации в системе http://e.lanbook.com/ с компьютеров МАУ, подключенных к сети.

2) Электронно-библиотечная система "IPRbooks"

Условия доступа: из локальной сети МГТУ, а так же удаленный доступ посредством сети Интернет (после регистрации на сайте ЭБС с ПК университета).

http://iprbookshop.ru

3) Электронно-библиотечная система "Рыбохозяйственное образование"

Доступ осуществляется по логину и паролю, логин и пароль доступа находятся на общем абонементе (207 "В"). http://lib.klgtu.ru/jirbis2/

4) Электронно-библиотечная система "Университетская библиотека онлайн"

Условия доступа: из локальной сети МГТУ, а так же удаленный доступ посредством сети Интернет (после регистрации на сайте ЭБС с ПК университета) http://biblioclub.ru/

5) Электронная библиотечная система "Консультант студента"

Доступ с ПК университета (по внешнему IP-адресу МАУ); с любого ПК (удаленный доступ) посредством сети Интернет (при регистрации на сайте с ПК вуза). http://www.studentlibrary.ru/

6) Электронно-библиотечная система ЭБС "Троицкий мост"

Доступ осуществляется с ПК университета (по внешнему IP-адресу МАУ); с любого ПК (удаленный доступ) посредством сети Интернет (при регистрации на сайте с ПК вуза). http://www.trmost.com/tm-main.shtml?lib

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства

- 1) Операционная система WindowsXPProfessionalRussianAcademicOPEN, лицензия № 44335756 от 29.07. 08;
- 2) ОфисныйпакетMicrosoftOffice 2007 RussianAcademicOPEN, лицензия № 45676388 от 08.07.09;
- 3) Программный пакет MathWorksMATLAB 2009 /2010 (сетеваяверсия) LicenseNumber 619865 от 11.12.2009 (договор 32/356 от 10 декабря 2009г.)

8. Обеспечение освоения дисциплины лиц с инвалидностью и ОВЗ

Обучающиеся из числа инвалидов и лиц с OB3 обеспечиваются печатными и (или) электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

- **9.** Материально-техническое обеспечение дисциплины (модуля) представлено в приложении к ОПОП «Материально-технические условия реализации образовательной программы»
- учебные аудитории для проведения учебных занятий, предусмотренных программой специалитета, оснащенные оборудованием и техническими средствами обучения;
- 1) Учебный корпус по адресу

Учебный корпус по адресу

183010, Мурманская область, г. Мурманск, просп. Кирова, д. 2,

Аудитория № 512 В Учебная аудитория для проведения занятий лекционного типа, практических и лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля, промежуточной аттестации.

Укомплектовано специализированной мебелью Количество столов - 12

Количество стульев - 24

Посадочных мест - 24

Доска аудиторная - 1

Комплект для проведения лабораторных работ по электродинамике «Электромагнитные поля в волноводах», - 1 шт.,

Комплект для проведения лабораторных работ по электродинамике «Излучение элементарных источников» - 1 шт.,

Комплект для проведения лабораторных работ по электродинамике «Электромагнитные волны в анизотропных средах» - 1 шт., Учебные макеты антенн - 4 шт.,

2) Учебный корпус по адресу

183010, Мурманская область, г. Мурманск, просп. Кирова, д. 2,

Аудитория 505 В "Лаборатория электроники" Специальное помещение для проведения лабораторных работ, практических занятий и курсового проектирования.

Посадочных мест - 12

Доска аудиторная малая - 1

ПК для проведения виртуальных лабораторных и практических работ - 2 шт.

Комплекс NIElvisII - 2 шт.

Плата расширения LabView : практикум по цифровым элементам информационно-измерительной техники - 2 шт.,

Наглядные пособия по устройствам СВЧ - 3 шт.

- помещения для самостоятельной работы обучающихся, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа к электронной информационно-образовательной среде МГТУ;

Учебный корпус по адресу

183010, Мурманская область, г. Мурманск, ул. Советская, д.10,

аудитория № 213 С Специальное помещение для самостоятельной работы

Укомплектовано специализированной мебелью и техническими средствами обучения:

 доска аудиторная – 1 шт. – персональные компьютеры с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета:

Intel(R) Core(TM) 2 DUO CPU E7200 2,53 ГГц, 1 ГбОЗУ – 2 шт.;

Intel(R) Pentium(R) CPU G840 2,8 ΓΓιι, 2 Γ6Ο3У – 3 шт.;

Intel(R) Celeron(R) CPU 2,8 ГГц, 1 ГбОЗУ –

1 шт.;

Intel(R) Pentium(R) 4CPU 2,8 ΓΓι, 1,5 Γ6Ο3У – 1 шт.;

Посадочных мест – 11

Не допускается замена оборудования его виртуальными аналогами.

10. Распределение трудоемкости по видам учебной деятельности

Таблица 1 - Распределение трудоемкости

таолица т - гаспре		Распределение трудоемкости дисциплины (модуля) по формам обучения								
Вид учебной		I	Очна	•		Заочная				
деятельности		Семестр			Всего часов	Семестр/Курс				Всего часов
	4					3	4			
Лекции	20					6				
Практические занятия							8			
Лабораторные работы	16									
Самостоятельная работа	108					66	60			
Подготовка к промежуточной аттестации							4			
Всего часов по дисциплине	144					72	72			144
/ из них в форме практической подготовки										

Формы промежуточной аттестации и текущего контроля

Экзамен		1				•	
Зачет/зачет с оценкой	1				1		
Курсовая работа (проект)							

Количество						
расчетно-	1			1		
графических работ						
Количество						
контрольных						
работ						
Количество						
рефератов						
Количество эссе						

Перечень лабораторных работ по формам обучения

№ п\п	Темы лабораторных работ
1	2
	Очная форма
1.	Исследование характеристик полупроводниковых диодов. Исследование характеристик биполярного транзистора. Исследование характеристик полевого транзистора.
2.	Исследование работы инвертирующего усилителя. Исследование работы неинвертирующего усилителя.
3.	Исследование работы логических элементов. Исследование работы JK- триггера Исследование работы параллельного и сдвигового регистров
4.	Исследование линий передачи - прямоугольного и круглого волноводов
5.	Исследование фильтров и направленных ответвителей на микрополосковых линиях.
6.	Исследование микрополосковых антенн
	Заочная форма
1.	Исследование характеристик полупроводниковых диодов. Исследование характеристик биполярного транзистора. Исследование характеристик полевого транзистора.
2.	Исследование работы инвертирующего усилителя. Исследование работы неинвертирующего усилителя.
3.	Исследование работы логических элементов. Исследование работы JK- триггера Исследование работы параллельного и сдвигового регистров
4.	Исследование линий передачи - прямоугольного и круглого волноводов
5.	Исследование фильтров и направленных ответвителей на микрополосковых линиях
6.	Исследование микрополосковых антенн

Перечень практических занятий по формам обучения

№ п\п	Темы практических занятий
1	2
	Очная форма
1	Применение полупроводниковых диодов. Выпрямители а диодах. Применение диодов
1.	Шоттки. Использование стабилитронов.
2.	Определение параметров биполярных транзисторов по его ВАХ
3.	Биполярный транзистор в ключевом режиме. Электронные ключи на биполярных
	транзисторах. Преимущества применения полевых транзисторов в ключевых схемах.
4.	Генератор прямоугольных импульсов на биполярном транзисторе. Различные виды
	мультивибраторов.
5.	Дифференциальный усилитель. Операционный усилитель. Применение ОУ.
	· · · · · · · · · · · · · · · · · · ·

	Заочная форма
1.	Определение параметров биполярных транзисторов по его ВАХ
2.	Биполярный транзистор в ключевом режиме. Электронные ключи на биполярных
	транзисторах. Преимущества применения полевых транзисторов в ключевых схемах.
3.	Генератор прямоугольных импульсов на биполярном транзисторе. Различные виды
	мультивибраторов.
4.	Дифференциальный усилитель. Операционный усилитель. Применение ОУ.